Spin-Boson Model through a Poisson-Driven Stochastic Process

نویسنده

  • Masao Hirokawa
چکیده

We give a functional integral representation of the semigroup generated by the spin-boson Hamiltonian by making use of a Poisson point process and a Euclidean field. We present a method of constructing Gibbs path measures indexed by the full real line which can be applied also to more general stochastic processes with jump discontinuities. Using these tools we then show existence and uniqueness of the ground state of the spin-boson, and analyze ground state properties. In particular, we prove super-exponential decay of the number of bosons, Gaussian decay of the field operators, derive expressions for the positive integer, fractional and exponential moments of the field operator, and discuss the field fluctuations in the ground state. Key-words: Poisson process, càdlàg paths, Gibbs measure, spin-boson operator, ground state

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Boltzmann Equation for Magnetic Relaxation in High-Spin Molecules

We introduce the stochastic Boltzmann equation (SBE) as an approach for exploring the spin dynamics of magnetic molecules coupled to a stochastic environment. The SBE is a time-evolution equation for the probability density of the spin density matrix of the system. This probability density is relevant to experiments which take measurements on single molecules, in which probabilities of observin...

متن کامل

2 6 Fe b 20 08 Phase coherence in an ensemble of uncoupled limit - cycle oscillators receiving common Poisson impulses

An ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses shows a range of non-trivial behavior, from synchronization, desynchronization, to clustering. The group behavior that arises in the ensemble can be predicted from the phase response of a single oscillator to a given impulsive perturbation. We present a theory based on phase reduction of a jump stochastic process...

متن کامل

Backward Doubly Stochastic Differential Equations Driven by Levy Process : The Case of Non-Liphschitz Coefficients

In this work we deal with a Backward doubly stochastic differential equation (BDSDE) associated to a random Poisson measure. We establish existence and uniqueness of the solution in the case of non-Lipschitz coefficients.

متن کامل

Eigenvalues of stochastic Hamiltonian systems driven by Poisson process with boundary conditions

In this paper, we study an eigenvalue problem for stochastic Hamiltonian systems driven by a Brownian motion and Poisson process with boundary conditions. By means of dual transformation and generalized Riccati equation systems, we prove the existence of eigenvalues and construct the corresponding eigenfunctions. Moreover, a specific numerical example is considered to illustrate the phenomenon ...

متن کامل

Phase coherence in an ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses.

An ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses shows a range of nontrivial behavior, from synchronization, desynchronization, to clustering. The group behavior that arises in the ensemble can be predicted from the phase response of a single oscillator to a given impulsive perturbation. We present a theory based on phase reduction of a jump stochastic process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012